Sorry!! The article you are trying to read is not available now.
Thank you very much;
you're only a step away from
downloading your reports.

Waste Not, Want Not: Researchers Turn Waste Heat Into Energy

By

The idea has been around for six decades, but an MIT professor and his colleagues have found a way to use new material and advanced engineering to make it work.

PrintPRINT
Just as frugal cooks use every possible scrap of food in their kitchens to avoid waste, so industrialists try to get the most out of their own processes. One way to do that is to tap the huge quantities of waste heat created in factories and power plants as a byproduct of mechanized operations.

Harnessing this form of heat hasn't been easy. Until now, the focus has been on solid-state thermoelectric mechanisms, which can generate electricity from temperature differences. The materials for these devices, though, tend to be hard to find.
 
But researchers at the Massachusetts Institute of Technology and Stanford University report that they've found a new way to convert this waste heat to energy when these heat differences are less than the temperature of boiling water, 100 Celsius or 212 Fahrenheit.

Waste heat of 100 C or greater is efficient to use because it can boil water and thus create steam energy. But a large amount of waste heat falls below this temperature, making its use in energy generation a challenge.

And this low-grade heat is plentiful. Researcher Yi Cui of Stanford says, "Virtually all power plants and manufacturing processes, like steelmaking and refining, release tremendous amounts of low-grade heat to ambient temperatures. Our new battery technology is designed to take advantage of this temperature gradient at the industrial scale."

According to MIT post-doctoral researcher Yuan Yang, "One-third of all energy consumption in the United States ends up as low-grade heat."
The researchers say their technique can be applied to store energy in batteries, particularly rechargeable batteries, which have become a big focus energy research in the past few years. The MIT-Stanford researchers' method is based on a phenomenon known as the thermogalvanic effect.

The voltage of rechargeable batteries relies on temperatures, and their solution combines the cycles of charging and discharging with heating and cooling, with the voltage during discharge greater than the voltage during charge.

This results in a net increase in energy because it delivers more electricity than was used to charge it. The report says this can be achieved at waste heat temperatures as low as 50 C (122 F). In a test using waste heat of 60 C (140 F), the new system had an estimated efficiency of 5.7%.

Gang Chen, an MIT professor, says he and his colleagues didn't come up with the idea of using low-grade waste heat. It's been around for six decades. Instead, he says, their contribution was "using material that was not around at that time" for the battery electrodes, as well as advances in engineering the system.

Yang adds that previous studies were based on temperatures of at least 500 C (932 F), because most current heat-recovery systems work best with higher temperature differences.

This new system's advantage in converting waste heat to electricity has one downside: It has a relatively low power density, i.e., the quantity of power generated for a given weight. And Chen says additional research is needed to accelerate the charging and discharging of a batter and to assess its long-term reliability.
 
This article was written by Andy Tully of Oilprice.com.
No positions in stocks mentioned.
The information on this website solely reflects the analysis of or opinion about the performance of securities and financial markets by the writers whose articles appear on the site. The views expressed by the writers are not necessarily the views of Minyanville Media, Inc. or members of its management. Nothing contained on the website is intended to constitute a recommendation or advice addressed to an individual investor or category of investors to purchase, sell or hold any security, or to take any action with respect to the prospective movement of the securities markets or to solicit the purchase or sale of any security. Any investment decisions must be made by the reader either individually or in consultation with his or her investment professional. Minyanville writers and staff may trade or hold positions in securities that are discussed in articles appearing on the website. Writers of articles are required to disclose whether they have a position in any stock or fund discussed in an article, but are not permitted to disclose the size or direction of the position. Nothing on this website is intended to solicit business of any kind for a writer's business or fund. Minyanville management and staff as well as contributing writers will not respond to emails or other communications requesting investment advice.

Copyright 2011 Minyanville Media, Inc. All Rights Reserved.
PrintPRINT
 
Featured Videos

WHAT'S POPULAR IN THE VILLE