Sorry!! The article you are trying to read is not available now.

Precious Metals: Is Tellurium the New Gold?

Print comment Post Comments
Gold has been spectacularly popular among investors for the past couple of years.

Silver seems to be this year's gold.

So, what's next year's silver gonna be?

According to Robert Jaffe, a physicist at MIT, tellurium could be a metal investor's best new play.

"Tellurium ought to be regarded as more precious than gold -- it is; it is rarer," he tells New Scientist magazine.

An article by James Mitchell Crow in the June, 2011 issue of New Scientist, titled "13 Exotic Elements We Can't Live Without," points out:

We rarely stop to think of the advances in materials that underlie our material advances. Yet almost all our personal gadgets and technological innovations have something in common: they rely on some extremely unfamiliar materials from the nether reaches of the periodic table. Even if you have never heard of the likes of hafnium, erbium or tantalum, chances are there is some not too far from where you are sitting.

You could soon be hearing much more about them, too. Demand for many of these unsung elements is soaring, so much so that it could soon outstrip supply. That's partly down to our insatiable hunger for the latest gadgetry, but increasingly it is also being driven by the green-energy revolution. For every headphone or computer hard-drive that depends on the magnetic properties of neodymium or dysprosium, a wind turbine or motor for an electric car demands even more of the stuff. Similarly, the properties that make indium indispensable for every touchscreen make it a leading light in the next generation of solar cells.

All that means we are heading for a crunch. In its Critical Materials Strategy, published in December last year, the US Department of Energy (DoE) assessed 14 elements of specific importance to clean-energy technologies. It identified six at "critical" risk of supply disruption within the next five years: indium, and five "rare earth" elements, europium, neodymium, terbium, yttrium and dysprosium. It rates a further three - cerium, lanthanum and tellurium - as "near-critical".

Here are the 13 elements necessary for cleantech applications that may be winners in this year's commodities portfolio:


New Scientist says:

These numerous uses make for a perfect storm threatening future supplies. In its Critical Materials Strategy, which assesses elements crucial for future green-energy technologies, the US Department of Energy estimates that wind turbines and electric cars could make up 40 per cent of neodymium demand in an already overstretched market. Together with increasing demand for the element in personal electronic devices, that makes for a clear "critical" rating.


New Scientist says:

Erbium is a crucial ingredient in the optical fibres used to transport light-encoded information around the world. These cables are remarkably good at keeping light bouncing along, easily outperforming a copper cable transporting an electrical signal. Even so, the light signal slowly fades as it racks up the kilometres, making amplification necessary.


New Scientist says:

In 2009, solar cells made from thin films of cadmium telluride became the first to undercut bulky silicon panels in cost per watt of electricity generating capacity.

Because the global market for the element has been minute compared with that for copper - some $100 million against over $100 billion - there has been little incentive to extract it. That will change as demand grows, but better extraction methods are expected to only double the supply, which will be nowhere near enough to cover the predicted demand if the new-style solar cells take off. The US DoE anticipates a supply shortfall by 2025.


Hafnium's peerless heat resistance has taken it to the moon and back as part of the alloy used in the nozzle of rocket thrusters fitted to the Apollo lunar module. Since 2007, though, it has also been found much closer to home, in the minuscule transistors of powerful computer chips.

That's because hafnium oxide is a highly effective electrical insulator. Compared with silicon dioxide, which is conventionally used to switch transistors on and off, it is much less likely to let unwanted currents seep through. It also switches 20 per cent faster, allowing more information to pass. This has enabled transistor size to shrink from 65 nanometres with silicon dioxide first to 45 nm and now to 32 nm.

For the other nine elements ready to break out (in New Scientist's opinion), CLICK HERE.

POSITION:  No positions in stocks mentioned.